support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
  • Research
  • Publications
  • Teaching
  • Grants
  • Media
    • News
    • Gallery
      • Open Lab 2021
      • Plant Science Night at TKS
      • Green House
      • Visitors in Stress Granule Lab
      • Traveling with Visitors
      • End of Year Celebration
      • ICAR 2022 Belfast
      • Graduation
  • Contact us
breadcrumb-bg

The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration

  1. Home
  2. Publications
  • Clear filters

The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration

by Monika Kosmacz, Sandro Parlanti, Markus Schwarzlander, Friedrich Kragler, Francesco Licausi, Joost T. van Dongen
Scientific Year: 2014 DOI: 10.1111/pce.12493

Extra Information

Plant Cell and Environment 

Abstract

Plants often experience low oxygen conditions as the consequence of reduced oxygen availability in their environment or due to a high activity of respiratory metabolism. Recently, an oxygen sensing pathway was described in Arabidopsis thaliana which involves the migration of an ERF transcription factor (RAP2.12) from the plasma membrane to the nucleus upon hypoxia. Moreover, RAP2.12 protein level is controlled through an oxygen-dependent branch of the N-end rule pathway for proteasomal degradation. Inside the nucleus, RAP2.12 induces the expression of genes involved in the adaptation to reduced oxygen availability. In the present study, we describe the oxygen concentration and time-resolved characterization of RAP2.12 activity. A reduction of the oxygen availability to half the concentration in normal air is sufficient to trigger RAP2.12 relocalization into the nucleus, while nuclear accumulation correlates with the first induction of the molecular response to hypoxia. Nuclear presence of RAP2.12 may not only depend on relocalization of existing protein, but involves de novo synthesis of the transcription factor as well. After re-oxygenation of the tissue, degradation of RAP2.12 in the nucleus was observed within 3 h, concomitant with reduction in hypoxia responsive gene transcripts to normoxic levels.

Keywords

arabidopsis ethylene response factor N-end rule pathway anoxia confocal laser scanning microscopy hypoxia oxygen sensing
Stress-Granule-icon-IT-WHITE logo-white
  • Home
  • People
  • Research
  • Publications
  • Media
  • Contact us
Flag Counter

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...