Stress granules (SGs) are ubiquitous nonmembrane-bound assemblies of protein and mRNA formed under stress conditions associated with stalled translation. SGs are evolutionarily conserved across eukaryotes. The canonical function of SGs is to selectively protect mRNAs and proteins from unfolding and prevent degradation induced by diverse environmental stresses. Moreover, sequestration into SGs provides an elegant way to regulate protein activities. Disassembly of SGs upon stress recovery is accompanied by the reactivation of protein translation and protein activities. The regulatory importance of SGs has been corroborated by recent studies describing the multiomics analysis of the composition of SGs from yeast, animal, and plant cells. Herein, we describe an isolation protocol of SGs that allows for the identification of proteins, mRNA, and metabolites sequestered into SG cores. Furthermore, the described protocols can be used to isolate other SG-like foci.