support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
  • Research
  • Publications
  • Teaching
  • Grants
  • Media
    • News
    • Gallery
      • Open Lab 2021
      • Plant Science Night at TKS
      • Green House
      • Visitors in Stress Granule Lab
      • Traveling with Visitors
      • End of Year Celebration
      • ICAR 2022 Belfast
      • Graduation
  • Contact us
breadcrumb-bg

A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis

  1. Home
  2. Publications
  • Clear filters

A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis

by Beatrice Giuntoli, Seung Cho Lee, Francesco Licausi, Monika Kosmacz, Teruko Oosumi, Joost T. van Dongen, Julia Bailey-Serres, Pierdomenico Perata
Scientific Year: 2014 DOI: 10.1371/journal.pbio.1001950

Extra Information

Plos Biology 

Abstract

Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule–insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein–protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen-sensing mechanism in plants opens new perspectives for breeding flood-resistant crops.

Keywords

trihelix DNA binding protein hypoxia arabidopsis transcriptional activation ethylene-responsive normoxia
Stress-Granule-icon-IT-WHITE logo-white
  • Home
  • People
  • Research
  • Publications
  • Media
  • Contact us
Flag Counter

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...