support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
  • Research
  • Publications
  • Teaching
  • Grants
  • Media
    • News
    • Gallery
      • Open Lab 2021
      • Plant Science Night at TKS
      • Green House
      • Visitors in Stress Granule Lab
      • Traveling with Visitors
      • End of Year Celebration
      • ICAR 2022 Belfast
      • Graduation
  • Contact us
breadcrumb-bg

A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato

  1. Home
  2. Publications
  • Clear filters

A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato

by Jianing Mi, Jose G Vallarino, Ivan Petrik, Ondrej Novak, Sandra M Correa, Monika Chodasiewicz, Michel Havaux, Manuel Rodriguez-Concepcion, Salim Al-Babili, Alisdair R Fernie, Aleksandra Skirycz, Juan C Moreno
Scientific Year: 2022 DOI: https://doi.org/10.1016/j.ymben.2022.01.004

Extra Information

Metabolic Engineering

Abstract

Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.

Keywords

abiotic stress apocarotenoids biomass and yield carotenoids metabolic engineering metabolites and lipids phytohormones
Stress-Granule-icon-IT-WHITE logo-white
  • Home
  • People
  • Research
  • Publications
  • Media
  • Contact us
Flag Counter

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...